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Path integral and gravitational radiation damping? 

G Schafer and H Dehnen 
Fakultat fur Physik der Universitat Konstanz, D-7750 Konstanz, Postfach 5560, West 
Germany 

Received 10 November 1980, in final form 23 February 1981 

Abstract. The energy loss of a gravitationally bound, quantum mechanical matter system 
due to gravitational radiation damping is calculated in first approximation using Feynman’s 
path integral formalism. The classical limit is discussed, confirming the classical quadrupole 
radiation formula. 

1. Introduction 

In a previous paper (Schafer and Dehnen 1980) Einstein’s classical quadrupole 
radiation formula was established by calculating the spontaneous transition prob- 
abilities of a bound quantum mechanical matter system with respect to gravitational 
radiation from Einstein’s absorption coefficients, using the method of thermal equili- 
brium between the matter system and the radiation field. The absorption coefficients 
were obtained using Dirac’s usual time-dependent perturbation theory without quan- 
tisation of the radiation field. 

In this paper we give a full field theoretical derivation of the energy loss of a 
gravitationally bound, quantum mechanical matter system due to gravitational 
radiation. First we deduce the classical Lagrangian of a gravitationally bound matter 
system interacting with the gravitational wave field on the quadrupole approximation 
level, and then we quantise the whole according to Feynman’s path integral formalism. 
In this framework the spontaneous transition amplitude for the decay of the quantised 
matter system is calculated. The result confirms again the classical quadrupole radia- 
tion formula 

(f is the Newtonian gravitational constant, and Qab(u) the Fourier transform of the 
mass quadrupole tensor) in the sense of the correspondence principle. 

As in our previous paper, the difficulties of a consistent approximative integration of 
the inhomogeneous classical field equations of gravitation are avoided, and fewer 
approximation steps are necessary for calculating the radiation damping than in the 
usual classical case. Beyond this, no use is made of any energy pseudotensor for the 
gravitational field, in contrast to our previous paper. 

t This paper is based on an essay which received an honourable mention (1980) from the Gravity Research 
Foundation. 
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2. The model 

In view of the quantum mechanical approach, we choose for the matter a finite system of 
point masses, the energy-momentum tensor of which takes the form? 

where mi is the mass and qi) the space-like position of the ith particle (dT2 = -dsZ; the 
signature of g,, = (+ , + , +, -)). Einstein's field equations for the metric g,, read 

R,, = (8 rf/ c 4,  ( r, - Tg,, 1 
and for the metric we make the ansatz 

(3) 

g,, = r lFv + U,, + h,, + u , ~ .  (4) 

Here vFV is the Minkowski metric in Cartesian coordinates and its perturbations U,,,, h,, 
and U , ,  are cQnsidered as small compared with r lFv.  

The quantity 

U,, = - (20/C2)S,, ( 5 )  

takes into account the instantaneous Newtonian gravitational field of the point-particle 
system, the potential 0 of which is given by 

0 = - f mi/lx 
i 

Evidently U,, is of the order of c-' and fulfils to this order the de Donder condition$ 

( 6 )  e 1  
U, l a  - iuael, = 0. 

The field h,, represents the gravitational wave field with the properties 

hF4 = 0 ,  ha" = 0, h,",, = 0 (7) 

(TT-gauge), and fulfils the inhomogeneous wave equation, from (2) and (3) with the use 
of ( 5 )  and (5a):  

d3k 
x exp[ik(x - x(~))]- 

(2r)3. 

Here TT means the transverse-traceless part obtained by projection with the projection 
operator Pab = Sab - n,nb, n = k/k (k = IkI), cf Misner eta1 (1973). For the derivation of 
(8) we have restricted ourselves on the right-hand side to the leading TT-projected 
terms with respect to powers of c-' ( . fa  = dx"/dt). 

i Greek indices run from 1 to 4 (x4 = cr)  and Latin indices from 1 to 3 .  
f Raising and lowering of indices is performed by 7"" and qwu respectively. 1.t means the partial derivative 
with respect to the coordinate x". 
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In view of the comparison with the later quantum mechanical calculation, we give 
here the retarded solution of (8); it takes the form 

exp(ikx) exp[ - iw ( t  - t’)] d3k dw dt’ 
X 

k2 - (w + is)’/c2 (27d4 * 

Evidently only the reciprocal wavelength k = W O / C  contributes essentially to the 
integral, where w o  is a typical frequency of the matter system. The leading term of hab 
with respect to powers of c-l was found, when going over from (8) to @a), by setting 
kxci, + 0 (wavelength large compared with the linear dimension of the matter system, 
quadrupole approximation). This term is of the order of c - ~ .  

Because of the ‘zero’ boundary conditions (no solution of the homogeneous wave 
equation present) in equation (16a) and the fact that those hab contribute most of the 
path integral in P 4 which are of the same order as (8a) (see the Appendix), it is sufficient 
to consider the order of magnitude of hab in the following as c - ~ ? .  

Finally, the term U , ,  in (4) describes all perturbations of the Newtonian potential U,, 
and the wave field h,”. As for h,,, we demand for U,, + U,, the de Donder condition 
exactly. Then from (2) and (3) we obtain, in view of (4)-(7), taking into account all 
terms up to the order of C-’hab (leading terms containing hab), the following differential 
equation for v44: 

(9) ab 
V44’0(la = h U44lalb, 

which results from the homogeneous part of (3) only. The terms of order up to cP6, but 
independent of hab, are omitted because they give rise to a fine-structure of the matter 
system only. The differential equations for the other components of U,, are not 
required with respect to the Lagrangian approach in § 3. 

In view of the approximation in equation (9), it makes sense only if we restrict 
ourselves furthermore to the leading term with respect to powers of c-’, neglecting the 
retardation of hab over the material system by considering hab as a function of t alone. 
Then we obtain from (9), with regard to ( 5 )  and (5a) ,  under appropriate limiting 
procedures and the boundary condition h ab, 2,444 + 0 $2144 + 0, the near-zone solution 
(for details see Schafer and Dehnen (1980)): 

3. The Lagrangian 

The action functional of the total system has, according to (2) and (3), the form 

c4 
S =  -E i dTi+-[[ 1671-f RJ<d3xd t .  

Inserting (4), we obtain from the material term, in the same approximation as in 

t We thank the anonymous referee for bringing this to our attention. 
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equation (9), 

and, after elimination of the second derivatives of the metric? from the gravitational 
term, the Lagrangian 

L =-- c4 I hablWhab‘lrd3x -E m i c 2 i ( ~ 4 4 + v 4 4 )  
6 4 r f  i 

using the properties (5)-(7) and (9). In (12b)  the first expression on the right-hand side 
represents the leading term of the free radiation field, whereas the second one is of the 
same constitution as ( 1 2 a ) .  Now we rearrange the terms of the total Lagrangian 
L = L, + L, in a natural manner as L = Lmat i- Lint -k Lrad with 

L =-- c 4  I habl,habicL d3x, 
6 4 ~ f  rad 

where ( 5 ) ,  (5a) and (10) are inserted and the irrelevant rest- and self-energies of the 
point masses are dropped. 

Evidently L,,, and Lrad represent the leading Lagrangians of the free matter system 
and the free radiation field respectively, whereas Lint is the leading interaction Lagran- 
gian between matter and radiation. Using the Hamiltonian Hmat of the undisturbed 
material system, equation ( 1 3 6 )  can be written with the help of the Poisson-bracket 
formalism within the order of hab(t) as 

Lint=ahab(t) E m i [ H m a t ,  [Hmat, x$)x?i)Il 
i 

= i\hab(t)oab 

with the traceless mass quadrupole tensor (remember haa = 0) 

Qab =E mi(3x$)xh)  - x $ ) T ~ ~ ) .  ( 1 4 a )  
i 

Finally we note that higher correction terms (counted in powers of c-’) would be 
added to the expressions (13a) - (13c )  corresponding to their character (pure matter, 
interaction, pure radiation). 

4. The path integral 

According to Feynman’s path integral quantisation, the transition amplitude of the total 

t This procedure does not destroy the gauge invariance of the action functional (see Weyll970) and coincides 
with the reconstruction of the Lagrangian of general relativity by Gibbons and Hawking (1977); see also 
Weinberg (1979). 
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system from an initial to a final state is defined by 

where ti and tf mean the times of the initial and final state respectively. The action 
functionals Smat, Sint and Srad correspond to the Lagrangians (13a) ,  (13b)  or (14) ,  and 
(13c).  

Because our aim is the calculation of the energy loss of the matter system by 
gravitational radiation, we consider its spontaneous decay. For this we first evaluate the 
transition amplitude (15)  for the 0 to 0 graviton transition. Following Feynman and 
Hibbs (1965), a straightforward calculation yields 

~ ( 0 ,  0 ) = j f f  fi  e x p ( ~ [ ~ m a t ( x ) + ~ ( x ) ~ ) ~ x ,  (16)  

where 

is given with the use of (14)  and (13c)  by 
+m 

I ( x ) = i y l o  f "  jj ii"b(t)6ab(t')exp(-iwIt-t'l)dtdt'w dw. (16b)  
9olrc 

-m 

In view of the saddle point method, the dominant contribution of the path integral (16a)  
comes from such values of hab which satisfy the classical equation of motion. From this 
it is evident that higher correction terms in (13c)  and (14) do not disturb the c - ~  order of 
the result (16b) ,  which is already the order of the final result (21).  

In obtaining equation (16b)  the tracelessness of Qab is used explicitly, as well as the 
assumption that the wavelength of the radiation is large compared with the size of the 
matter system (quadrupole approximation). The latter is not in contradiction to the 
U-integration in (16b)  because, as we shall see later, the high frequencies do not 
contribute to the integral. 

Then the amplitude for the matter transition from state M to M becomes, from (16)  
and (16b) ,  

(+M(x) is the wavefunction of the state M ) .  Expansion with respect to I yields in the 
first-order approximation for an energy eigenstate M with energy EM 

T = tf - ti, AMM(O, 0) = exp[-(i/h)(EM + AEM)TI, (18)  

where 

is valid, which has its origin in the imaginary part of I (cf (16b))  only. The S- function 
means that the w-  integration does not disturb the quadrupole approximation. The real 
part of A E M  diverges but has no significance for the decay of the matter system. The 
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probability for this is given with regard to (18) by 

exp(2 Im AEMT/h). (19) 

Accordingly the probability per time unit for spontaneous transition from the energy 
eigenstate M into all lower energy eigenstates N has, using (18a), the form (hwMN = 
EM -EN) 

We note explicitly that higher correction terms in the Lagrangian (13a) would give rise 
ohly to relativistic corrections in the eigenstates N, M and their eigenvalues EN, E M  
respectively (fine-structure) and do not disturb the structure of the formulae (18a) and 
(20). Nevertheless, within a consistent approximation these correctiop terms must be 
neglected. 

In consequence of the transition probability (20), the total energy loss per time unit 
of the material system by its spontaneous decay with respect to the gravitational 
interaction reads 

This result is in exact agreement with the classical equation (1) in the sense of the 
correspondence principle, whereby this principle is applied to the non-relativistic 
matter only and not to the gravitational wave field. 

Appendix 

According to the saddle point method the path integral (16a) can be approximately 
written as 

I (x )  2: Sint (X ,  hclass) + Sraci(hclass). (AI) 

Here hclass is a 'classical' solution of the classical equations of motion, following from 
(13c) and (14) with the help of Hamilton's principle, which are identical with equation 
(8) in the quadrupole approximation. Because the special boundary condition (the 0 to 
0 graviton transition in equation (16a)) is connected with tunnelling or barrier 
penetration of gravitons, we are forced to take the solution of the 'classical' Euclidean 
(imaginary-time) equations of motion which vanishes at infinity, cf for example Gervais 
(1978). This solution is unique (cf DeWitt 1964) and is given, if analytically continued 
to the Minkowski metric, by the Feynman propagator in the following way: 

The difference from the classical solution (8a) consists only in the different Green 
functions in both equations. The complex valuedness of the Feynman propagator in 
(A2) is essential for the fact that the imaginary part of I ( x ) ,  which determines the final 
result (21) solely, does not vanish. If we insert (A2) into ( A l )  we obtain for I ( x ) ,  using 
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the equations (13c) and (14), the ‘approximate’ expression 
+m 

2365 

-cc 

which however, because of the relation 

exp[ - iw’(t - t’)] i +m 

7T -m w12 - w 2  + is dw’, exp(-iwlt -tI) = - w  J’ 
is already identical to the exact solution (16b). Consequently the ‘stationary’ values of 
hab, according to (A2), determine the path integral completely in our case. 
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